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ABSTRACT
Nanoscale energy exchange andmovement of fluid by Lorentz force
is themost recent problem that has a strong connectionwith applied
mathematics due to the consumption of energy. Imposing the incli-
nation of Magnetic dipole in the fluid has abundant applications in
magnetic drug engineering, astrophysics, sensors, geophysics, cos-
mology, and targeting. This study is associated with the exchange
of energy under the influence of the inclination of Magnetic dipole
with cylinder geometry. The Cross nanofluid mathematical model is
launched to carry the nanoscale energy exchangewith temperature-
dependent thermal conductivity. The permeable cylinder geome-
try along with the different effects is provided during the expand-
ing/contracting cylinder. Whereas Cross fluid helps to investigate
the problem in shear thinning/thickening regions. The numerical
representations of the problem are provided via the BVP4C scheme.
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Nomenclature

b0 Constant of dimension length. t
K(T) Variable thermal conductivity
β Constant of contraction – expansion
Uw(x, t) Initial velocity
Ue(x, t) Free stream velocity
Tw , Cw Temperature and concentration of the cylinder
T∞, C∞ Temperature and concentration of the cylinder
a, c Constant of dimension (time)−1

τ Cauchy stress tensor
k Thermal conductivity
x, r Space variable
s Suction parameter
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k∞ Conductivity away for
Pr Prandtl number
ξ Chemical rate reaction parameter
λ Velocity ratio parameter
μ0 zero shear rate viscosity
A1 First Rivilin Erickson’s tensor
μ∞ Infinite shear rate viscosity
p Pressure
I Identity tensor
� Relaxation time constant
n Power law index
Sc Schmidt number
μ Viscosity
qw Wall shear stress
τrx Heat flux
M Magnetic parameter
u, v Velocity component
cf Skin friction
B0 Magnetic field strength constant
.

γ Shear strain
B Magnetic field strength
cp Specific heat
D Solute Diffusivity
Rr Chemical reaction parameter
σ Reaction rate parameter
ρ Density
C Concentration profile
T Temperature profile
V Velocity profile
θw Temperature ratio parameter
A Unsteadiness parameter
We Weissenberg
αm Thermal diffusivity
Re Reynold number
Nu Nusselt number

1. Introduction

The technology and thermal engineering fields have been facing energy consumption
problems for many decades. These energy consumptions can be handled to increase the
thermal conductivity of nanoliquids. Nanoscale heat transport is very effective for this
purpose by considering nanofluids. The Nanoscale process of heat transport is utilized
for minimizing emerging energy issues. The formation of fluid is done by imposing the
bombardment of solid particles. Consequently, the obtained nanoparticles have less than
100 nm dimension are called nanofluids. Nanofluid is a stream of all nanoparticles and
boosts energy performance by increasing thermal conductivity. To make better energy
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performance by increasing the thermal conductivity is considered an advance and valid
procedure. Recently,many scholarsworked onnanofluid andnanoscale heat transport. Vis-
coelastic nanofluidwith imposed external buoyancy forceswas exploredbyWaqas et al. [1].
The flowoptimizationwith SiC/EG-water nanofluids and heat transfer analysiswasmadeby
Yang et al. [2]. The prediction of heat transport using thermal conductivity was explored by
Komeilibirjandi et al. [3]. Yang et al. [4] addressed the air purification and heat recovery
phenomenon with the highlights of nanofluids. Puneeth et al. [5] considered an effec-
tive hybrid nanofluid with the effects of bioconvection and radiation of heterogeneous –
homogeneous chemical reactions.

The association of the magnetic fields and their related properties based on their fluid
mechanism is known as magnetohydrodynamics (MHD). A magnetic field creates electric-
ity and force, which, combining current and magnetic effect, is called Lorentz force. The
phenomenon of MHD has various real-life applications, such as electric power genera-
tion systems, development of high-efficiency, contamination and determination of ECG
signal, magneto resonance imaging (MRI), incrementing the amplitude of the T wave,
molten metal, metal transformation procedure, nanofluid pumping, solid-state mixtures,
pumping of seawater, fluid pumping, the industry of crystal growing, industry of poly-
mers, MHD accelerations, MHD thrusters, MHD generator/motor, and flow control around
hypersonic [6–17]. The theory related to MHD depicts the influence of magnetic effects.
The Lorentz force is generated due to the effects of fluid motion. Keeping in view of the
vital effects of the magnetic dipole on fluid motion, many scholars contributed by placing
perpendicular/inclined magnetic dipole over fluid flow. The gyrotactic motile microorgan-
ism with Cross nanofluid and unsteady MHD aspect of flow over the geometry of a heated
sheet was discovered by Reddy et al. [18]. Bioconvection, nonlinear thermal radiation,
and melting process over wedge geometry were depicted by Waqas et al. [19]. Thermal
conductivity performance to boost the heat transfer and magneto effect with cylinder-
constructed geometry was numerically achieved by Imran et al. [20]. Furthermore, Noor et
al. [21,22] worked onMHD viscous flow over a linearly stretching sheet embedded in a non-
Darcian porous medium and they presented the numerical results with attached physical
parameters.

Furthermore, the saturated flowofCrossnanofluid and its dynamicsofmultiple solutions
attached facts of heat source effects and cross-diffusion were found numerical by [21,22].

Chemical reactions diverted human’s life from tease to ease. It made human life very
easy and there is no world progress without chemical reactions. There is a need for mini-
mumenergy,which activates the chemical reaction knownas activation energy. A chemical
reaction, which remains fixed during the process, is called a homogeneous chemical pro-
cess. On the other hand, a chemical process is able to occur everywhere, which is referred to
a heterogeneous chemical process. Physically, there are two types of chemical processes,
one is a constructive chemical process and the other one is a destructive process. In fluid
mechanism, chemical reaction and Activation energy are utilized to judge the mass trans-
port of fluid. According to many investigations, the chemical process plays a vital role in
themass transport of fluid. Xiong et al. [23] worked on the dynamics of Cross nanofluid and
its multiple solutions with the geometry of thin needlepoint. The same work related to the
dual solution with the addition of external buoyancy force was pointed out by Hafeez et al.
[24]. Chemical reactionprocess andheat sink/source effect of nanofluid and their numerical
outcomes are displayed in the scientific community by Li et al. [25]. Chemical reactions help
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Figure 1. The geometry of flow in the permeable cylinder.

with autocatalytic and heterogeneous catalysis over the physical shape of a rotating disk as
shown by Yu et al. [26]. Furthermore, Yu et al. [26] considered Ostwald-de-Waele nanofluid
over rotating disk geometry with heterogeneous catalysis. MHD hybrid nanofluid with the
feature of multiple slips with the facts of the autocatalytic chemical process along with the
Cattaneo – Christov heat flux was discovered by Gul et al. [27] and others [28–33].

This article presents the numerical judgment of energy exchange and inclination of
magnetic dipole effects on time-dependent Cross nanofluid with cylinder geometry.
The viscosity of the Cross nanofluid model is utilized to obtain the numerical results
of nanoscale energy exchange and temperature-dependent variable thermal conductiv-
ity. Permeable cylinder geometry represents the effect of several parameters during the
expanding/contracting cylinder and the Cross fluid helps to investigate the problem in
shear thinning/thickening region.

2. Geometry of flow in the permeable cylinder and problem formulation

The flow is passing through the permeable cylinder with the competence of extrac-
tion/expansion,whose timedependent radius isb(t) = (1 − βt)1/2b0,whereb0 is a positive
constant and β is a constant of contraction/expansion with positive and negative val-
ues.Uw(x, t) = 2cx

1−βt inmathematics is called time-dependent stretching/shrinking velocity

and Ue(x, t) = 2ax
1−βt is the free stream velocity. The stagnation point is also considered in

the cylinder geometry at r = b0, with x = 0. The inclined magnetic field B(t) = β0√
(1−βt)

is imposed in the radial direction of the cylinder. Passing flow through the cylinder is
considered 2D and incompressible. Surface temperature, surface concentration, ambience
temperature, and ambience concentration of cylinder denoted by Tw , Cw , T∞, C∞ and
Tw > T∞. Figure 1

A tensor of the Crossmodel and all its relatedmathematics are listed in Equations (1) and
(2).

τ = −pI + μ(
.

γ )A1.
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μ(
.
γ ) =

[
μ∞ + μo − μ∞

1 + (�
.
γ )

n

]
. (1)

(
.
γ =

√
1
2
tr(A1)2, A1 = (∇V) + (∇V)T

)
. (2)

The velocity assumption is taken as

V = [u(r, x, t), v(r, x, t), 0], T = T(r, x, t),C = C(r, x, t). (3)

Theboundary layer analysis (BLA) and formulatedproblemtake the followingmathematical
form:

∂(ru)

∂x
+ ∂(rv)

∂x
= 0, (4)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂r
= Ue

∂Ue

dx
+ υ

r

∂u

∂r

⎡
⎣ 1[(

1 + � ∂u
∂r

)n]
⎤
⎦+ ∂Ue

dt
,

+ υ
∂

∂r

⎡
⎣ ∂u

∂r[(
1 + � ∂u

∂r

)n]
⎤
⎦+ σB2(t)

ρ
sin2(�)(u − Ue), (5)

[
∂T

∂t
+ v

∂T

∂r
+ u

∂T

∂x

]
= k

1
r

∂

∂r

[
k(T) r

∂T

∂r

]
, (6)

(
∂C

∂t
+ v

∂C

∂r
+ u

∂C

∂x

)
= D

[
∂2C

∂r2
+ 1

r

∂C

∂r

]
, (7)

The associated boundary conditions (BCs) are

u = Uw(x, t) = 2cx
1 − βt

, v = Vw(t) = − ab0s√
1 − βt

,

T = Tw , C = Cw at r = b(t), (8)

r → ∞, C → C∞, T → T∞ , u → Ue(x, t), (9)

K(T) = k∞
(
1 + ε

(
T − T∞
Tw − T∞

))
, (10)

u = 2ax
(1 − βt)

f ′(η) , v = − ab0
(1 − βt)

f (η)√
η

, η =
(a0
r

)−2
(1 − βt)−1.

θ(η) = T − T∞
Tf − T∞

, φ(η) = C − C∞
Cf − C∞

, (11)

η( 1 + (1 − n)Wen(f ′′)n)f ′′′ + (2 + (1 − n)Wen(f ′′)n) 12 f
′′

+ Re(ff ′′ − f ′2 + 1)(1 + Wen(f ′′)n)2 − A(ηf ′′ + f ′ − 1)(1 + Wen(f ′′)n)2

− M2sin2(�)Re(1 + Wen(f ′′)n)2(f ′ − 1) = 0, (12)

(1 + εθ)ηθ ′′ + (1 + εθ)θ ′ + εηθ ′2 − PrAηθ ′ − PrRefθ ′ = 0, (13)

ηφ′′ + φ′ − AScηφ′ + ReScf ′φ′ − ReScB∗φ = 0, (14)
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The BCs related to the above system of ODEs are given as follows:

φ(1) = 1, f
′
(1) = λ, f (1) = s, θ(1) = 1,

as η → ∞, θ(η) → 0 , f
′
(η) → 1, φ(η) → 0, (15)

Re = ab20
2ν

, A = βb20
4ν

, Sc = ν

D
, Pr = ν

αm
,

We = 4r�Ue

b0(1 − βt)
, ξ = Rr(1 − βt)

2a
,M2 = σβ2

0

2ρa
, θw

= Tw
T∞

, λ = c

a
, (16)

Flowmechanism and transformation of heat are the Nusselt numbers Nu and the local skin
friction coefficient Cf is given as follows:

Nu = b(t)qw|r=b(t)

2k(Tw − T∞)
and Cf = τrx|r=b(t)

1
2ρU

2
e

, (17)

qw is the wall heat flux for shear stress, τxx represents the wall shear stress, and both are
defined as follows:

τxx = μ0
∂u

∂r

[
1

1 + �n
(

∂u
∂r

)n
]
r=b(t)

, qw = −k
∂T

∂r
|r=b(t), (18)

The Nusselt number Nu and the local skin friction coefficient Cf taken the following form:

Nu = −θ ′(1)

Cf Re
x

b(t)
= f ′′(1)

[
1

1 + Wen(f ′′(1))n

]
, (19)

3. Methodology for Bvp4c

Nonlinear systems of ODEs attached with boundary conditions (BCs) are shot down into
the system of linear equations with initial conditions (ICs). The methodology is illustrated
as under

F = l1, l′1 = l2, l′2 = l3,

y′
3 = 1

η( 1 + (1 − n)Wen(l3)
n)

×

⎡
⎢⎢⎣

−(2 + (1 − n)Wen(l3)n) 12 l3
−Re(l1l3 − l2

2 + 1)(1 + Wen(l3)n)2

+A(ηl3 + l2 − 1)(1 + Wen(l3)n)2

+M2sin2(�)Re(1 + Wen(l3)n)2(l2 − 1) = 0,

⎤
⎥⎥⎦

l4 = θ , l4
′ = l5

l5
′ = 1

(1 + εl4)η

[
PrAη l5 + PrRel1l5 − (1 + εl4)l5 − εη(l5)

2
]
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Furthermore, the concentration form is written as follows:

l6 = φ, l6
′ = l7

y7
′ = 1

η
[AScηl7 − l7 − ReScl2l7 + ReScBl6]

Now the initial conditions are written as follows:

Chart 1. Methodology.
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l6(1) = 1, l2(1) = λ, l1(1) = s, l4(1) = 1,
as η → ∞, l4(η) → 0 , l2(η) → 1, l6(η) → 0,

4. Methodology for Keller Box

Chart 1 and 2

Chart 2. Complete demonstration for the Keller box.
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Figure 2. (a,b): Demonstration of We and Re of the velocity field for stretching and shrinking the
cylinder.

Figure 3. (a,b): Demonstration ofM and� of the velocity field for stretching and shrinking the cylinder.

5. Debate on numerical outcomes

This section presents the numerical outcomes obtained during the execution of the numer-
ical technique. In this study, the execution of the inclination of amagnetic dipole, nanoscale
exchange of heat with cylinder geometry is made to analyze the Cross Nanofluid. In the
deep eye, it is observed that there is established a scheme for the solution of nonlinear
higher order ODEs presented in Equations (13)–(15). Hence to reduce the order of ODEs
the shooting scheme is applied. Furthermore, Bvp4c is applied to get the numerical sim-
ulations of the model. Weissenberg number is symbolized as We, Pr for Prandtl number,
Schmidt ratio is described as Sc, local Reynold number is represented as Re, etc. Pictorial
explanations for the numerical results are shown in Figures 2–8. Statistical data are col-
lected to check the manner of all physical parameters and quantities from graphs (9–17).
The parameter obtained from the ratio between initial velocity and free stream velocity is
λ, if λ < 0 it is called the shrinking case and λ > 0 gives the stretching case.

Equation of momentum, which shows the velocity magnitude of Cross nanofluid, is
attached with We, n, Re, A, M, and � parameters. All necessary graphs and statistical
pictures show the effects of the velocity of the Cross nanofluid.
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Figure 4. Demonstration of A of the velocity field for stretching and shrinking the cylinder.

Figure 5. (a,b): Demonstration of Re and Pr of temperature field for stretching and shrinking the
cylinder.

Figure 6. (a,b): Demonstration of� andAof temperature field for stretching and shrinking the cylinder.
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Figure 7. (a,b): Demonstration of Sc and Re of mass transfer field for stretching and shrinking the
cylinder.

Figure 8. (a–b): Demonstration of� and β∗ of the velocity field for stretching/shrinking the cylinder.

When cylinder shrinks, then velocity becomes higher and due to relaxation of time fac-
tor, velocity field goes down for the shrinking case and gets higher for the stretching case.
Velocity distribution gets fast for Re in the case of stretching and the opposite attitude is
shown for the shrinking cylinder. Physically, Re is the ratio between viscous forces and iner-
tial forces and greater Re results greater inertial forces. As in the case of stretching cylinder,
inertial forces become lose and velocity gets fast speed while for the shrinking cylinder
these forces become stronger and play an obstacle role in flow due to this flow, the velocity
gets down. Demonstration ofWe and Re of velocity field for stretching and shrinking cylin-
der is shown in Figure 2(a,b). Figure 3(a,b) demonstrates the physical impact ofM and� of
velocity field for stretching and shrinking cylinder. Both parameters produce Lorentz force
and due to this, the velocity gets down. As Lorentz force is the combination of electric and
magnetic force and they both retard the flow speed, hence the velocity is decreased. Figure
4 shows the demonstration of A of the velocity field for stretching and shrinking the cylin-
der. Figure 5(a,b) demonstrates the physical impact of Re and Pr on the temperature field
for stretching and shrinking the cylinder. Pr increases the thermal thickness because this
factor temperature of the Cross fluid is goes up for both cases. Figure 6(a,b) demonstrates
� andAof temperature field for stretching and shrinking the cylinder. The inclination angle
reduces the velocity due towhich the temperature of the Cross nanofluid increases rapidly.
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Figure 9. (a–h): Demonstration of skin friction for shrinking/stretching case for various physical param-
eters We, Re, A, and M.
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Figure 10. (a–e): Demonstration of We, Re, Pr, A, and M with the Nusselt number.
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Figure 7(a,b) demonstrates the Sc and Re of the mass transfer field for stretching and
shrinking the cylinder. In both cases, these physical parameters are responsible for lower
transportation of mass, while Figure 8(a,b) shows the inclination angle and β∗cause grow
in the mass transfer field for stretching and shrinking the cylinder. Graphs (9–17) show the
physical parameters are linked with the physical quantities. Figures 9 and 10

6. Concluding remarks

The nanoscale heat transporting phenomenon of the fluid is explored by including the
Lorentz force and variable thermal conductivity with the mathematical model of the cross
model. The Cross fluid helps to investigate the problem in the shear thinning/thickening
region. The numerical representations of the problem are provided via the BVP4C scheme.

The concluding remarks of this study are provided as follows:

1. Thermal conductivity enhances the nanoscale transport of energy.
2. Incline angle parameters produce the Lorentz force and due to which the velocity

gets down.
3. Due to the relaxation of the time factor velocity field goes down for the shrinking

case and higher for the stretching case for the ‘We’ physical parameter.
4. Velocity distribution gets rapid for Re in the case of stretching and the opposite

attitude is shown for the shrinking cylinder.
5. The designedmodel is successfully solved using numerical procedures based on the

BVP4C.
6. Pr increases thermal thickness due to which factor temperature of the Cross fluid

goes up for both cases.
7. The inclination angle reduces the velocity due to which factor temperature of the

Cross nanofluid increases rapidly.
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